Энергия электрического поля. Электрическая энергия системы зарядов. Энергия уединенного проводника. Энергия конденсатора. Плотность энергии. Энергия заряженного проводника и конденсатора. Объемная плотность энергии электрического поля Взаимная энергия сис

1. Энергия системы неподвижных точечных зарядов. Электростатические силы взаимо­действия консервативны (см. § 57); следовательно, система зарядов обладает потенци­альной энергией. Найдем потенциальную энергию системы двух неподвижных точеч­ных зарядов Q 1 и Q 2 , находящихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (см. 58.2) и (58.5)):

где j 12 и j 21 - соответственно потенциалы, создаваемые зарядом Q 2 в точке нахожде­ния заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2 . Согласно (58.5),

поэтому W 1 = W 2 = W и

Добавляя к системе из двух зарядов последовательно зарядыQ 3 , Q 4 , ... , можно убедиться в том, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна

(69.1)

где j i - потенциал, создаваемый в той точке, где находится заряд Q i , всеми зарядами, кроме i -го.

2. Энергия заряженного уединенного проводника. Пусть имеется уединенный провод­ник, заряд, емкость и потенциал которого соответственно равны Q, С, j. Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконеч­ности на уединенный проводник, затратив на это работу, равную

Чтобы зарядить тело от нулевого потенциала до j, необходимо совершить работу

(69.2)

Энергия заряженного проводника равна той работе, которую необходимо совер­шить, чтобы зарядить этот проводник:

Формулу (69.3) можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Пола­гая потенциал проводника равным j, из (69.1) найдем

где - заряд проводника.

3. Энергия заряженного конденсатора . Как всякий заряженный проводник, конден­сатор обладает энергией, которая в соответствии с формулой (69.3) равна

где Q - заряд конденсатора, С - его емкость, Dj - разность потенциалов между обкладками конденсатора.

Используя выражение (69.4), можно найтимеханическую (пондеромоторную ) силу, с которой пластины конденсатора притягивают друг друга. Для этого предположим, что расстояние х между пластинами меняется, например, на величину dx. Тогда действующая сила совершает работу dA=F dx вследствие уменьшения потенциальной энергии системы F dx = - dW, откуда

(69.5)

Подставив в (69.4) выражение (69.3), получим

(69.6)

Производя дифференцирование при конкретном значении энергии (см. (69.5) и (69.6)), найдем искомую силу:

где знак минус указывает, что сила F является силой притяжения.

4. Энергия электростатического поля. Преобразуем формулу (69.4), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовав­шись выражением для емкости плоского конденсатора (C=e 0 eS/d ) и разности потенци­алов между его обкладками (Dj =Ed . Тогда

(69.7)

где V= Sd - объем конденсатора. Формула (69.7) показывает, что энергия конден­сатора выражается через величину, характеризующую электростатическое поле, - на­пряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

(69.8)

Выражение (69.8) справедливо только дляизотропного диэлектрика, для которого выполняется соотношение (62.2):Р = æe 0 Е.

Формулы (69.4) и (69.7) соответственно связывают энергию конденсатора с зарядом на его обкладках и с напряженностью поля. Возникает, естественно, вопрос о локализа­ции электростатической энергии и что является ее носителем - заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика изучает постоянные во времени поля неподвижных зарядов, т. е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные воп­росы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, способных переносить энергию. Это убедительно подтверждает основ­ное положение теории близкодействия о том, что энергия локализована в поле и что носителем энергии является поле.

Глава 10. Постоянный электрический ток

§ 70. Электрический ток, сила и плотность тока

В электродинамике - разделе учения об электричестве, в котором рассматриваются явления и процессы, обусловленные движением электрических зарядов или макроско­пических заряженных тел, - важнейшим понятием является понятие электрического тока. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов. В проводнике под действием приложенного электрического поля Е свободные электрические заряды перемещаются: положительные - по полю, отрицательные - против поля (рис. 146, а), т. е. в проводнике возникает электричес­кий ток, называемый током проводимости . Если же упорядоченное движение электрических зарядов осуществляется перемещением в пространстве заряженного макроскопического тела (рис. 146, б), то возникает так называемый конвекционный ток .

Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей тока - заряженных частиц, способных переме­щаться упорядоченно, а с другой - наличие электрического поля, энергия которого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условно принимают направление движения положительных зарядов.

Количественной мерой электрического тока служит сила тока I скалярная физи­ческая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным . Для постоянного тока

где Q - электрический заряд, проходящий за время t через поперечное сечение провод­ника. Единица силы тока - ампер (А).

Физическая величина, определяемая силой тока, проходящего через единицу площа­ди поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока:

Выразим силу и плотность тока через скорость áv ñ упорядоченного движения зарядов в проводнике. Если концентрация носителей тока равна n и каждый носитель имеет элементарный заряд е (что не обязательно для ионов), то за время dt через поперечное сечение S проводника переносится заряд dQ=ne ávñ S dt. Сила тока

а плотность тока

(70.1)

Плотность тока - вектор, ориентированный по направлению тока, т. е. направление вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока - ампер на метр в квадрате (А/м 2).

Сила тока сквозь произвольную поверхность S определяется как поток вектора j , т. е.

(70.2)

где dS =n dS (n - единичный вектор нормали к площадке dS, составляющей с век­тором j угол a).

§ 71. Сторонние силы. Электродвижущая сила и напряжение

Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравнива­нию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способ­ного создавать и поддерживать разность потенциалов за счет работы сил неэлект­ростатического происхождения. Такие устройства называютсяисточниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называютсясторонними.

Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе - за счет механической энергии вращения ротора генератора и т. п. Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.

Сторонние силы совершают работу по перемещению электрических зарядов. Физи­ческая величина, определяемая работой, совершаемой сторонними силами при переме­щении единичного положительного заряда, называетсяэлектродвижущей силой (э.д.с.), действующей в цепи:

(71.1)

Эта работа производятся за счет энергии, затрачиваемой в источнике тока, поэтому величину можно также называть электродвижущей силой источника тока, включен­ного в цепь. Часто, вместо того чтобы сказать: «в цепи действуют сторонние силы», говорят: «в цепи действует э.д.с.», т. е. термин «электродвижущая сила» употребляет­ся как характеристика сторонних сил. Э.д.с., как и потенциал, выражается в вольтах (ср. (84.9) и (97.1)).

Сторонняя сила F ст, действующая на заряд Q 0 , может быть выражена как

где Е ст - напряженность поля сторонних сил. Работа же сторонних сил по перемещению заряда Q 0 на замкнутом участке цепи равна

(71.2)

Разделив (71.2) на Q 0 , получим выражение для э. д. с., действующей в цепи:

т. е. э.д.с., действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. Э.д.с., действующая на участке 1 -2 , равна

(71.3)

На заряд Q 0 помимо сторонних сил действуют также силы электростатического поля F e =Q 0 E . Таким образом, результирующая сила, действующая в цепи на заряд Q 0 , равна

Работа, совершаемая результирующей силой над зарядом Q 0 на участке 1 -2 , равна

Используя выражения (97.3) и (84.8), можем записать

(71.4)

Для замкнутой цепи работа электростатических сил равна нулю (см. § 57), поэтому в данном случае

Напряжением U на участке 1 -2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторон­них сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (71.4),

Понятие напряжения является обобщением понятия разности потенциалов: напря­жение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует Э.д.с., т. е. сторонние силы отсутствуют.

§ 72. Закон Ома. Сопротивление проводников

Немецкий физик Г. Ом (1787;-1854) экспериментально установил, что сила тока I , текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

(72.1)

где R - электрическое сопротивление проводника.

Уравнение (72.1) выражает закон Ома для участка цепи (не содержащего источника тока): сала тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротив­лению проводника. Формула (72.1) позволяет установить единицу сопротивления - ом (Ом): 1 Ом - сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А.

Величина

называется электрической проводимостью проводника. Единица проводимости - сименс (См): 1 См - проводимость участка электрической цепи сопротивлением 1 Ом.

Сопротивление проводников зависит от его размеров и формы, а также от матери­ала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:

(72.2)

где r - коэффициент пропорциональности, характеризующий материал проводника и называемыйудельным электрическим сопротивлением. Единица удельного элект­рического сопротивления - ом×метр (Ом×м). Наименьшим удельным сопротивлением обладают серебро (1,6×10 –8 Ом×м) и медь (1,7×10 –8 Ом×м). На практике наряду с медными применяются алюминиевые провода. Хотя алюминий и имеет большее, чем медь, удельное сопротивление (2,6×10 –8 Ом×м), но зато обладает меньшей плотностью по сравнению с медью.

Закон Ома можно представить в дифференциальной форме. Подставив выражение для сопротивления (72.2) в закон Ома (72.1), получим

(72.3)

где величина, обратная удельному сопротивлению,

называетсяудельной электрической проводимостью вещества проводника. Ее едини­ца - сименс на метр (См/м).

Учитывая, что U /l = Е - напряженность электрического поля в проводнике, I/S = j - плотность тока, формулу (72.3) можно записать в виде

(72.4)

Так как в изотропном проводнике носители тока в каждой точке движутся в направле­нии вектора Е , то направления j и Е совпадают. Поэтому формулу (98.4) можно записать в векторном виде

Выражение (72.5) - закон Ома в дифференциальном форме , связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.

Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит и сопротивления, с температурой описывается линейным законом:

где r и r 0 , R и R 0 - соответственно удельные сопротивления и сопротивления провод­ника при t и 0°С, a -температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К –1 . Следовательно, температур­ная зависимость сопротивления может быть представлена в виде

где Т - термодинамическая температура.

Качественный ход температурной зависимости сопротивления металла представлен на рис. 147 (кривая 1 ). Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах T K (0,14-20 К), называемыхкритическими, характерных для каждого вещества, скачко­образно уменьшается до нуля (кривая 2 ), т. е. металл становится абсолютным провод­ником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в об­мотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуют­ся керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.

На зависимости электрического сопротивления металлов от температуры основано действиетермометров сопротивления, которые позволяют по градуированной взаимо­связи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называютсятермисторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.

§ 73. Работа и мощность тока. Закон Джоуля - Ленца

Рассмотрим однородный проводник, к концам которого приложено напряжение U. За "время dt через сечение проводника переносится заряд dq=I dt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по формуле (84.6), работа тока

(73.1)

Если сопротивление проводника R, то, используя законОма (72.1), получим

(73.2)

Из (73.1) и (73.2) следует, что мощность тока

(73.3)

Если сила тока выражается в амперах, напряжение - в вольтах, сопротивле­ние - в омах, то работа тока выражается в джоулях, а мощность - в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт×ч) и киловатт-час (кВт×ч). 1 Вт×ч - работа тока мощностью 1 Вт в течение 1 ч; 1 Вт×ч=3600 Bт×c=3,6×10 3 Дж; 1 кВт×ч=10 3 Вт×ч= 3,6×10 6 Дж.

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,

(73.4)

Таким образом, используя выражения (73.4), (73.1) и (73.2), получим

(73.5)

Выражение (73.5) представляет собойзакон Джоуля -Ленца, экспериментально уста­новленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.

Выделим в проводнике элементарный цилиндрический объем dV= dS dl (ось цилин­дра совпадает с направлением тока), сопротивление которого По закону Джоуля - Ленца, за время dt в этом объеме выделится теплота

Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна

(73.6)

Используя дифференциальную форму законаОма (j=gЕ) и соотношение r= 1/g, получим

(73.7)

Формулы (73.6) и (73.7) являются обобщенным выражениемзакона Джоуля-Ленца в дифференциальной форме, пригодным для любого проводника.

Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847-1923) лампы накаливания. На нагревании проводников электрическим током основано действие элект­рических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761-1834)), контактной электросварки, бытовых электронагрева­тельных приборов и т. д.

§ 74. Закон Ома для неоднородного участка цепи

Мы рассматривали закон Ома (см. (98.1)) для однородного участка цепи, т. е. такого, в котором не девствует э.д.с. (не действуют сторонние силы). Теперь рассмотрим неоднородный участок цепи, где действующую э.д.с. на участке 1 -2 обозначим через а приложенную на концах участка разность потенциалов - через j 1 -j 2 .

Если ток проходит по неподвижным проводникам, образующим участок 1-2, то работа А 12 всех сил (сторонних и электростатических), совершаемая над носителями тока, по закону сохранения и превращения энергии равна теплоте, выделяющейся на участке. Работа сил, совершаемая при перемещении заряда Q 0 на участке 1 -2 , согласно (71.4),

Э.д.с. как и сила тока I , - величина скалярная. Ее необходимо брать либо с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если э.д.с. способствует движению положительных зарядов в выбранном направлении (в направлении 1-2 ), то > 0. Если э.д.с. препятствует движению положительных зарядов в данном направлении, то < 0.

За время t в проводнике выделяется теплота (см. (73.5))

Из формул (74.1) и (74.2) получим

(74.4)

Выражение (74.3) или (74.4) представляет собойзакон Ома для неоднородного участка цепи в интегральной форме, который являетсяобобщенным законом Ома.

Если на данном участке цепи источник тока отсутствует (=0), то из (74.4) приходим к закону Ома для однородного участка цепи (72.1):

(при отсутствии сторонних сил напряжение на концах участка равно разности потенци­алов (см. § 71)).

Если же электрическая цепь замкнута, то выбранные точки 1 и 2 со­впадают, j 1 =j 2 ; тогда из (74.4) получаем закон Ома для замкнутой цепи:

где - э.д.с., действующая в цепи, R - суммарное сопротивление всей цепи. В общем случае R=r+R 1 , где r - внутреннее сопротивление источника тока, R 1 - со­противление внешней цепи. Поэтому законОма для замкнутой цепи будет иметь вид

Если цепь разомкнута и, следовательно, в ней ток отсутствует (I = 0), то из закона Ома (74.4) получим, что =j 1 -j 2 , т. е. э.д.с., действующая в разомкнутой цепи, равна разности потенциалов на ее концах. Следовательно, для того чтобы найти э.д.с. источника тока, надо измерить разность потенциалов на егоклеммах при разомкнутой цепи.

Рассмотрим сначала уединенный проводник, находящийся достаточно далеко от других тел. Если этому проводнику сообщить заряды после их перераспределения по объему проводника он приобретает потенциалы Отношение для данного уединенного проводника оказывается постоянным, зависящим только от его формы и размеров, и называется его электроемкостью. Это отношение сохраняется и при бесконечно малых изменениях заряда и потенциала, так что

Понятие электроемкости применимо только к проводникам, так как для них существует равновесное распределение зарядов по объему тела, при котором все точки проводника имеют один и тот же потенциал. Если же заряд сообщается изолятору, то он не растекается по нему и поэтому в различных местах изолятора потенциал может быть различен (в зависимости от расстояний до того места, где находится подведенный заряд).

Емкость уединенного шара радиуса находящегося в безграничном диэлектрике с проницаемостью легко рассчитать, так как потенциал на его поверхности (а следовательно, и в любой точке его объема)

В системе в

При наличии вблизи данного проводника других тел - проводников или изоляторов - отношение (1.58) зависит также от формы, размеров и относительного расположения соседних тел. Если эти соседние тела - проводники, то в них происходит перераспределение свободных зарядов, электрическое поле которых накладывается на поле данного тела и изменяет его потенциал. Если же соседние тела - диэлектрики, то они поляризуются, вследствие чего на поле данного тела накладывается поле связанных зарядов диэлектрика; это опять-таки изменяет потенциал рассматриваемого проводника.

Таким образом, при наличии соседних тел данный проводник при сообщении ему заряда приобретает иной потенциал, чем при их отсутствии.

Понятие электроемкости можно применять и к системе проводников; простейшей из них является система из двух одинаковых близко расположенных проводников, которым сообщаются равные и противоположные по знаку заряды. В частности, рассмотрим плоский конденсатор состоящий из двух близко расположенных параллельных металлических пластинок (обкладок); при сообщении обкладкам конденсатора зарядов они приобретают потенциалы Электроемкостью конденсатора называется отношение заряда на одной из его обкладок (по абсолютному значению, без учета знака) к

разности потенциалов между обкладками:

Допустим, что расстояние между обкладками настолько мало, что электрическое поле между ними можно считать однородным; напряженность этого поля, согласно формуле (1.36),

где площадь обкладок; поверхностная плотность зарядов на обкладках. Для однородного поля выполняется соотношение (1.45), поэтому

Подставив это выражение в формулу (1.60), получаем формулу Для расчета емкости плоского (двухпластинчатого) конденсатора:

У шарового конденсатора потенциалы на обкладках определяются зарядами которые имеются на этих обкладках, и их радиусами и

поэтому формула для расчета емкости такого конденсатора имеет вид

где величина зазора между обкладками. Если радиусы обкладок очень велики и мало, то можно положить (площадь обкладок) и тогда полученная формула будет совпадать с (1.61).

У цилиндрического конденсатора определяется емкость, приходящаяся на единицу длины. Выведем сначала формулу для разности потенциалов между обкладками; согласно формулам (1.32), (1.13) и (1.39), имеем:

(Интегрирование ведем вдоль перпендикуляра к оси конденсатора, т. е. вдоль направления силовой линии вектора очень длинного цилиндрического конденсатора вектор напряженности поля в зазоре перпендикулярен оси конденсатора: это условие не соблюдается на концах, но этим обстоятельством для достаточно длинных конденсаторов можно пренебречь.) Так как на единице длины каждой обкладки имеется заряд то «погонная» емкость цилиндрического конденсатора будет равна

Если величина зазора очень мала, то По этой формуле рассчитываетсямкость электрического кабеля, состоящего из внутреннего провода и наружной металлической брони, между которыми находится слой диэлектрика.

В электротехнике приходится рассчитывать емкость двухпроводной линии - системы из двух параллельных проводов (обычно круглого сечения). Обозначим

диусы сечений этих проводов через расстояние между осями проводов - через а и допустим, что . В этомслучае поле вокруг каждого провода можно с удовлетворительным приближением рассчитывать по формуле (1.34). Допустим, что на единице длины одного провода находится заряд а другого . В некоторой точке, расположенной на расстоянии х от оси первого провода, суммарная напряженность поля будет равна

Интегрируя вдоль перпендикуляра, соединяющего оси проводников, получим разность потенциалов между проводами:

Следовательно, погонная емкость двухпроводной линии будет равна

Так как было предположено, что расстояние между проводами значительно больше радиуса их сечений, то

В приведенных выше расчетных формулах для электроемкости при использовании системы следует положить а в Международной системе В частности, для плоского конденсатора:

Электроемкость выражается в фарадах В системе единицей электроемкости является сактиметр:

Так как заряда, потенциала, то см.

Рассмотрим параллельное (рис. II 1.26, а) и последовательное (рис. III.26, б) соединения конденсаторов. Если к точкам параллельно соединенных конденсаторов подвести равные и противоположные заряды то они распределятся между обкладками конденсаторов так, что Разность же потенциалов между обкладками всех конденсаторов будет одна и та же (так как они соединены вместе проводниками); обозначим через Емкостью такой системы конденсаторов называется отношение

Однако отношение емкость первого конденсатора, емкость второго и т. д. Следовательно,

Можно показать, что обычный многопластинчатый плоский конденсатор с числом пластин представляет собой параллельное соединение плоских двухпластинчатых конденсаторов, поэтому

Если к точкам последовательно соединенных конденсаторов подвести заряды то вследствие электростатической индукции на обкладках конденсаторов появятся равные и противоположные по знаку заряды При этом пластинки соседних конденсаторов, соединенные между собой проводником, имеют одинаковый потенциал.

Так как разность потенциалов на концах любой линии равна сумме разностей потенциалов на отдельных участках этой линии, то для линии проходящей через электрические поля соединенных конденсаторов, можно написать:

Емкостью этой системы конденсаторов по-прежнему называется отношение

Так как для первого конденсатора для второго то

Заметим интересную деталь: если между обкладками плоского конденсатора поместить несколько металлических пластинок, расположенных параллельно обкладкам (т. е. вдоль эквипотенциальных поверхностей), и если суммарный зазор между ними равен первоначальному зазору то емкость конденсатора не изменится. Действительно, такой конденсатор можно рассматривать как систему последовательно соединенных плоских конденсаторов, поэтому, применив формулу (1.64) и (1.67), получим

т. е. первоначальная емкость конденсатора не изменилась. В частности, емкость конденсатора не изменится, если вдоль эквипотенциальных поверхностей поместить металлические пластинки бесконечно малой толщины.

Если между обкладками плоского конденсатора имеются различные диэлектрики, как это показано на рис. II 1.26, в, а, то для расчета емкости такого конденсатора можно воспользоваться формулами (1.65) и (1.67). Конденсатор (рис. II 1.26, в) можно представить как систему из параллельно соединенных конденсаторов, имеющих одинаковые расстояния между пластинами, но различные и , и тогда

Конденсатор (рис. II 1.26, г) можно представить как систему последовательно соединенных плоских конденсаторов; так как введение или удаление бесконечно тонких металлических пластинок, параллельных обкладкам, не изменяет емкости конденсатора, то эти пластинки можно расположить вдоль границ между диэлектриками. Тогда, воспользовавшись формулами (1.61) и (1.67), получим

Если то эта формула перейдет в (1.61).

Для того чтобы сообщить проводнику некоторый заряд необходимо затратить определенную работу, так как каждая последующая порция подводимого заряда испытывает отталкивающее действие ранее поступивших на проводник одноименных зарядов. Допустим, что очередная порция заряда подводится из бесконечности, где потенциал к проводнику, имеющему уже потенциал Тогда элементарная работа, затрачиваемая на подведение заряда

Заряд q , находящийся на некотором проводнике, можно рассматривать как систему точечных зарядов, а следовательно, энергия заряженного проводника может быть определена по формуле (5.3). Известно, что область, занятая проводником, является эквипотенциальной, поэтому . Вынесем в формуле (5.3) за знак суммы:

так как и определяет весь заряд, сосредоточенный на проводнике, выражение для энергии заряженного проводника получим в виде: .

Применяя соотношение , можно получить следующее выражение для потенциальной энергии заряженного проводника:

.

Энергия заряженного конденсатора

Пусть заряд находится на обкладке с потенциалом , а заряд на обкладке с потенциалом . Согласно формуле (5.3) энергию такой системы можно определить:

Воспользовавшись выражением (4.4) для электроемкости конденсатора, (5.4) можно представить в виде:

. (5.5)

Энергия электростатического поля

Энергию заряженного конденсатора можно выразить через величины, характеризующие поле между пластинами. Сделаем это для плоского конденсатора. Учитывая формулу для плоского конденсатора и что , (5.5) примет вид:

. (5.6)

Так как - объем, занимаемый полем, то формулу (5.6) можно записать в виде:

. (5.7)

Формула (5.5) связывает энергию конденсатора с зарядом на его обкладках, а формула (5.7) – с напряженностью поля. В рамках электростатики невозможно ответить на вопрос, что является носителем энергии – заряды или поле? Постоянные поля и создающие их заряды не могут существовать обособленно друг от друга. Законы электродинамики доказывают, что носителем энергии является поле.

Если поле однородно (например, в плоском конденсаторе), энергия в нем распределяется с постоянной плотностью, значение которой можно найти по формуле:

. (5.8)

С учетом взаимосвязи напряженности и индукции поля выражения для плотности энергии (5.8) можно записать следующим образом:

.

Принимая во внимание (3.7), получим:

. (5.9)

Первое слагаемое в (5.9) определяет плотность энергии в вакууме, а второе – плотность энергии, затрачиваемую на поляризацию диэлектрика.

ПОСТОЯННЫЙ ТОК

Сила тока, плотность тока

Под электрическим током понимают упорядоченное движение заряженных частиц, причем за направление тока принимают направление движения положительных зарядов.

Электрический ток существует при наличии свободных зарядов и электрического поля. Такие условия для движения зарядов можно создать в вакууме (термоэлектронная эмиссия) и в различных средах, таких как твердые тела (металлы, полупроводники), жидкости (жидкие металлы, электролиты) и в газах. Носителями тока могут быть различные частицы, так в металлах – свободные электроны, в газах – электроны и ионы и т.д.



Протекание тока по проводнику характеризует сила тока I , определяемая по формуле:

где dq – заряд, проходящий через поперечное сечение проводника за время dt .

Для постоянного тока величина I остается одинаковой и по модулю, и по направлению, что позволяет в формуле (6.1) выбирать конечные значения заряда и времени:

Распределение тока по сечению проводника характеризует вектор плотности , направление которого в каждой точке проводника совпадает с направлением тока, т.е. с направлением скорости упорядоченных положительных зарядов . Модуль вектора равен:

где - сила тока, протекающего в данной точке внутри проводника через элементарную площадку , расположенную перпендикулярно к направлению тока (рис.6.1,а).

Введение вектора плотности тока позволяет найти силу тока, протекающего через любую поверхность S :

. (6.2)

В этой формуле угол – это угол между вектором и нормалью к элементарной площадке площадью (см.рис.6.1,а).

Представляет интерес выразить вектор плотности тока через характеристики, описывающие движение свободных зарядов в проводнике. В качестве примера рассмотрим электрический ток в металле, где валентные электроны образуют газ свободных частиц, заполняющих кристаллическую решетку положительно заряженных ионов.

При отсутствии электрического поля в проводнике свободные электроны участвуют только в тепловом движении со средней арифметической скоростью , определяемой по формуле

где - постоянная Больцмана, - масса электрона, - температура. При комнатной температуре .

Из-за хаотичности теплового движения электронов электрического тока не возникает ( =0), так как через поперечное сечение проводника в обе стороны проходит одинаковое число электронов, и поэтому суммарный перенос заряда равен нулю.



При включении электрического поля у электронов появляется добавочная скорость - средняя скорость направленного движения под действием сил электрического поля. Именно обеспечивает наличие тока в проводнике.

Через поперечное сечение проводника площадью S за время t пройдут все электроны, находящиеся в цилиндре высотой () (см.рис.6.1,б). Если ввести такую характеристику металла, как концентрацию свободных электронов, то тогда можно получить:

, (6.3)

где – заряд электрона или, в общем случае, свободной заряженной частицы, участвующей в создании электрического тока; N – число заряженных частиц в объеме V .

Приведем оценку модуля средней скорости направленного движения свободных электронов в металле . Учитывая числовые значения концентрации свободных электронов в металле n ~ 10 29 м -3 и предельно допустимую плотность тока, например, в медном проводнике j пред ~ 10 7 А/м 2 , из формулы (6.3) получим:

Из последнего выражения следует, что скорость < > упорядоченного движения значительно меньше скорости теплового движения.

Рассмотрим заряженный уединённый проводник произвольной формы, помещённый в вакуум. Пусть заряд проводника равен q, а потенциал внешнего (исходного) электростатического поля равен . Потенциал бесконечно удалённой точки пространства принимаем равным нулю. Для точечного электрического заряда величины , находящегося в точке пространства, потенциал которой равен , произведение представляет собой работу, которую совершили бы силы электростатического поля по перемещению этого заряда из рассматриваемой точки в бесконечно удалённую точку пространства по произвольной траектории. Иначе, произведение можно интерпретировать как потенциальную энергию заряда в точке пространства, потенциал внешнего поля которой равен . В основе приведённого рассуждения лежит предположение о том, что в процессе перемещения сосредоточенного электрического заряда распределение потенциала внешнего электростатического поля остаётся неизменным. Это справедливо, поскольку внешнее по отношению к электрическому заряду электростатическое поле создаётся по условию сторонними неподвижными и не изменяющимися зарядами.

В случае разрядки уединённого проводника дело обстоит сложнее: суммарный заряд проводника создаёт вокруг себя электростатическое поле, изменение величины заряда на проводнике сказывается на распределении потенциала в пространстве. Благодаря этому работа сил электростатического поля по перемещению элементарного заряда с поверхности проводника в бесконечно удалённую точку зависит от величины остающегося на проводнике электрического заряда:

Таким образом, приращение потенциальной энергии заряда на уединённом проводнике можно описать уравнением

. (2)

Вспомним, что потенциал проводника связан с электрическим зарядом ёмкостью

(3)

Поскольку ёмкость определяется только формой проводника, её величину можно считать постоянной. Подставим соотношение (3) в уравнение (2):

Потенциальная энергия электрического заряда на уединённом проводнике оказывается равной

(5)

размерность потенциальной энергии – Дж. Можно подумать, что полученные соотношения содержат логическое противоречие: первое из выражений для W определено полностью, а второе и третье определены с точностью до произвольной постоянной. Это не так. Хотя для потенциальной энергии системы произвольное постоянное слагаемое не имеет существенного значения, заметим, что под величиной в этих соотношениях «скрывается» разность . Если об этом не забывать, недоразумений не возникает.

Выражение для потенциальной энергии заряда на уединённом проводнике можно преобразовать. Заметим, что величина заряда проводника определена соотношением

где - поверхностная плотность электрического заряда на поверхности проводника. Величина связана с величиной нормальной к поверхности компонентой вектора напряжённости электростатического поля около проводника:

(7)

Здесь - внешняя нормаль по отношению к проводнику. Поскольку на поверхности проводника потенциал сохраняет постоянное значение, а напряжённость электростатического поля можно выразить через градиент потенциала, то выражение для потенциальной энергии (5) можно переписать в виде:

. (8)

Теперь вспомним, что потенциал электростатического поля в вакууме вне проводника удовлетворяет уравнению Лапласа . Тогда в каждой точке пространства вне проводника справедливо уравнение:

Проинтегрируем это соотношение по объёму вне проводника и используем при этом математическую теорему Остроградского-Гаусса с учётом обращения в нуль вектора на бесконечно удалённой поверхности, в результате получим:

. (10)

В приведённом результате вектор является вектором внешней нормали по отношению к объёму вне проводника. Используя полученный результат в выражении (8) с учётом зависимости напряжённости поля от потенциала, получим окончательно:

. (11)

На первый взгляд, зависимость (11) получена в результате чисто математических преобразований. Но сам результат позволяет по-новому взглянуть на физический смысл соотношения (11): потенциальная энергия электрического заряда на уединённом проводнике конечных размеров выражается через параметры пространства вне проводника, через напряженность электростатического поля вне проводника. Возникает вопрос, взаимодействие электрических зарядов или составляющие электростатического поля обладают физической реальностью? В рамках электростатики на этот вопрос нет ответа. Обе интерпретации равноправны. Но в рамках электродинамики экспериментально показано, что электрическое поле является реально существующим.

Подынтегральная функция в соотношении (11) является объёмной плотностью энергии электрического поля. Её размерность – Дж/м 3 .

Зависимость (11) позволяет сформулировать новое определение электрической ёмкости уединённого проводника в вакууме:

Это выражение можно было бы написать и раньше, но смысл величины как интеграла от объёмной плотности энергии электрического поля, созданного проводником с потенциалом на его поверхности, вне проводника, был бы утерян, а без этого невозможно воспользоваться выражением (12) для конструктивного расчёта величины С .