Вольфрамовое покрытие. Плазменное напыление вольфрама. Применение в ювелирном деле

Покрытие карбида вольфрама, как альтернатива гальваническому хромированию.

В течение более чем 70 лет хромированные покрытия оставались незаменимыми для защиты компонентов авиации, промышленных и потребительских изделий от износа, ударной нагрузки и коррозии. Однако в последние годы недостатки хромированных поверхностей заставили инженерное сообщество искать более дешевые и эффективные способы защиты поверхностей как в военном и гражданском авиационном секторе, так и в промышленности. Наилучшей альтернативой хромированию сегодня считается высокоскоростное газопламенное напыление (HVOF) карбида вольфрама. Оценочные испытания и увеличение количества успешных промышленных применений HVOF покрытий карбида вольфрама для различных компонентов авиационных двигателей и планера доказывают их преимущество. Эти покрытия применяются на шасси самолетов, гидравлических цилиндрах, подшипниках реактивных двигателей и корпусах подшипников, валах турбин и даже на таких элементах, как цепь привода вертолета и узлах пропеллера. Обеспечивающие лучшую защиту от износа, ударной нагрузки и усталости, лучшую или аналогичную защиту от коррозии, эти покрытия постепенно заменяют хромирование.

Помимо того, что HVOF покрытия карбида вольфрама имеют преимущество при работе в тяжелых условиях, эти покрытия гораздо легче наносятся по сравнению с традиционными электролитическими ваннами с хромом. Действительно, большое количество опубликованных технологических оценок (как военной так и гражданской направленности) доказывают состоятельность HVOF покрытий для замены хромирования. На сегодняшний день большое количество лабораторных и опытных испытаний, коммерческой эксплуатации продемонстрировали преимущества HVOF покрытий в защите от износа, коррозии и перегрева; трудоемкости нанесения; родолжительности жизненного цикла; экономической эффективности.

Лучший метод нанесения

HVOF покрытия наносятся с помощью . В ходе этого процесса горючий газ и кислород перемешиваются и под высоким давлением подаются в камеру сгорания, где происходит горение и образуется газовый поток высокого давления. Частицы порошка карбида вольфрама автоматически подаются непосредственно в область горения. Высокоскоростной газовый поток, содержащий расплавленные частицы порошка, направляется в сторону подложки, удар и осаждение частиц на поверхности образуют плотное покрытие с пористостью меньше чем 1% , содержанием оксидов меньше чем 1% и прочностью сцепления больше чем 80 МПа. HVOF покрытия наносятся в специальных роботизированных шумозащитных камерах .

Нанесение HVOF покрытия происходит быстрее по сравнению со стандартным хромированием. Обычно процесс напыления карбида вольфрама на шток занимает 1-2 часа, в то время как хромирование — более суток. К тому же, в отличие от хромирования, HVOF покрытия карбида вольфрама не подвержены водородному охрупчиванию . Все эти рабочие факторы в тандеме с уменьшением частоты ремонта и сокращением времени на восстановление позволяют сократить время простоя деталей в эксплуатации и увеличить жизненный цикл важных компонентов промышленных двигателей и элементов авиации.

Как видно из таблицы 1, значение микротвердости покрытий карбида вольфрама превышает 70 Rc, в то время как хромированные покрытия дают твердость 60-70 Rc. Значения микротвердости HVOF покрытия карбида вольфрама и хромированного покрытия по Виккерсу составляют соответственно 1050 для HVOF и 750-850 для хромирования.

Как замечено выше, высокие показатели прочности сцепления и низкая пористость так же доказывают преимущество HVOF покрытий. Из таблицы 1 можно заметить превосходство HVOF покрытия по сравнению с хромированием по антикоррозионным свойствам температурной выносливости.

Коммерческая эксплуатация

HVOF покрытия карбида вольфрама уже наносятся на различный элементы самолетов и шасси. К примеру, компания Engelhard применяет HVOF покрытия на самолетах как гражданской так и военной авиации, включая шасси и силовые приводы.

Министерство обороны, военно-воздушные силы и флот Сооединенных Штатов, а так же растущий частный сектор авиастоения и производства реактивных двигателей признают превосходство HVOF покрытий карбида вольфрама над гальваническим хромированием по параметрам защиты от износа, усталости и коррозии.
Перевод: Краснов Денис ООО «Технологические системы защитных покрытий»

Нанесение слоев вольфрама путем напыления плазменной горелкой.

Метод применяется для произ-ва нек-рых вольфрамовых изделий, напр. насадок и

вставок критич. сечений сопел ракет, тиглей различной формы и размеров и т. п., а также для получения слоев вольфрама на поверхности изделий, изготовленных из др. материалов. Плазменная горелка - прибор, обеспечивающий получение струи ионизированного газа очень высокой темп-ры (до 16500°). Конструкция горелки состоит из корпуса 1 с водоохлаждаемой рубашкой 3, механизма 2 для подачи электрода 6 и сопла 7. Подвод электроэнергии и воды для охлаждения корпуса и сопла осуществляется через два штуцера 4 и 8. Рабочий газ подается через трубку 5. Принцип работы горелки заключается в пропускании рабочего газа (аргон, гелий, азот, водород или их смеси) через электрич. дугу, возбуждаемую между электродом и соплом. Энергопитание обычно производится от генератора постоянного тока, однако в нек-рых случаях применяется и перем. ток. Газ при прохождении через сопло сжимает электрич. дугу, в результате чего электропроводность ее наружных областей заметно снижается. Вследствие этого темп-ра плазмы, к-рая образуется под воздействием дуги, значительно повышается. В зоце электрич. дуги происходит распад атомов рабочего газа на ионы с затратой определ. количества энергии. В конце факела ионы вновь рекомбинируются в атомы с выделением большого количества тепла, за счет к-рого напыляемые частицы разогреваются до очень высокой темп-ры (выше темп-ры плавления). П. н. в. может осуществляться путем подачи в зону электрич. дуги вольфрамовой проволоки или порошка. Расплавленные частицы вольфрама вылетают с большой скоростью из горелки и наносятся на обрабатываемое изделие. Хорошие результаты были достигнуты при нанесении вольфрама на сопла ракет, изготовленные из графита. Такие сопла могли удовлетворительно работать до 3000° и пропускании газа со скоростью ок. 1600 м/сек. Без вольфрамового покрытия графит в этих условиях сильно разрушается.

Для изготовления тонкостенных изделий с точными размерами применяется плазменное напыление вольфрама на вращающийся алюминиевый или латунный шаблон, к-рый затем удаляется вытравливанием. Темп-ра металлизуемой поверхности обычно не превышает 260°, но в случае необходимости ее можно охладить. Большая скорость движения напыленных частиц и высокая темп-ра обеспечивают их хорошее сцепление, высокую плотность и гладкую поверхность металла. При напылении на воздухе в готовом изделии наблюдается значит, увеличение содержания кислорода, в то время как содержание азота повышается незначительно. Для увеличения плотности металла изделия подвергают термообработке в вакууме при 2000-2200° в течение 1-2 час.

Вольфрам - это химический элемент периодической системы Менделеева, который принадлежит к VI группе. В природе вольфрам встречается в виде смеси из пяти изотопов. В своем обычном виде и при обычных условиях он представляет собой твердый металл серебристо-серого цвета. Он также является самым тугоплавким из всех металлов.

Основные свойства вольфрама

Вольфрам - это металл, обладающий замечательными физическими и химическими свойствами. Практически во всех отраслях современного производства применяется вольфрам. Формула его обычно выражается в виде обозначения оксида металла - WO 3 . Вольфрам считается самым тугоплавким из металлов. Предполагается, что лишь сиборгий может быть еще более тугоплавок. Но точно пока этого утверждать нельзя, так как сиборгий имеет очень малое время существования.

Этот металл имеет особые физические и химические свойства. Вольфрам имеет плотность 19300 кг/м 3 , температура плавления его составляет 3410 °С. По этому параметру он занимает второе место после углерода - графита или алмаза. В природе вольфрам встречается в виде пяти стабильных изотопов. Их массовые числа находятся в интервале от 180 до 186. Вольфрам обладает 6-й валентностью, а в соединениях она может составлять 0, 2, 3, 4 и 5. Металл также имеет достаточно высокий уровень теплопроводности. Для вольфрама этот показатель составляет 163 Вт/(м*град). По этому свойству он превышает даже такие соединения, как сплавы алюминия. Масса вольфрама обусловлена его плотностью, которая равна 19кг/м 3 . Степень окисления вольфрама колеблется от +2 до +6. В высших степенях своего окисления металл имеет кислотные свойства, а в низших - основные.

При этом сплавы низших соединений вольфрама считаются неустойчивыми. Самыми стойкими являются соединения со степенью +6. Они проявляют и наиболее характерные для металла химические свойства. Вольфрам имеет свойство легко образовывать комплексы. Но металлический вольфрам обычно является очень стойким. Он начинает взаимодействовать с кислородом лишь при температуре +400 °С. Кристаллическая решетка вольфрама относится к типу кубических объемноцентрированных.

Взаимодействие с другими химическими веществами

Если вольфрам смешать с сухим фтором, то можно получить соединение под названием "гексафторид", который плавится уже при температуре 2,5 °С, а закипает при 19,5 °С. Похожее вещество получают при соединении вольфрама с хлором. Но для такой реакции необходима достаточно высокая температура - порядка 600 °С. Однако вещество легко противостоит разрушительному действию воды и практически не подвергается изменениям на холоде. Вольфрам - металл, который без кислорода не производит реакции растворения в щелочах. Однако он легко растворяется в смеси HNO 3 и HF. Самые главные из химических соединений вольфрама - это его трехокись WO 3 , Н 2 WO 4 - вольфрамовая кислота, а также ее производные - соли вольфраматы.

Можно рассмотреть некоторые химические свойства вольфрама с уравнениями реакций. Например, формула WO 3 + 3H 2 = W+3H 2 O. В ней металл вольфрам восстанавливается из оксида, проявляется его свойство взаимодействия с водородом. Это уравнение отражает процесс получения вольфрама из его триоксида. Следующей формулой обозначается такое свойство, как практическая нерастворимость вольфрама в кислотах: W + 2HNO3 + 6HF = WF6 + 2NO + 4H2O. Одним из наиболее примечательных веществ, содержащих вольфрам, считается карбонил. Из него получают плотные и ультратонкие покрытия из чистого вольфрама.

История открытия

Вольфрам - металл, получивший свое название из латинского языка. В переводе это слово означает «волчья пена». Такое необычное название появилось из-за поведения металла. Сопровождая добытую оловянную руду, вольфрам мешал выделению олова. Из-за него в процессе выплавки образовывались только шлаки. Об этом металле говорили, что он «поедает олово, как волк ест овцу». Для многих интересно, кто открыл химический элемент вольфрам?

Это научное открытие было сделано одновременно в двух местах разными учеными, независимо друг от друга. В 1781 году химик из Швеции Шееле получил так называемый «тяжелый камень», проводя опыты с азотной кислотой и шеелитом. В 1783 году братья-химики из Испании по фамилии Элюар также сообщил об открытии нового элемента. Точнее, ими был открыт оксид вольфрама, растворявшийся в аммиаке.

Сплавы с другими металлами

В настоящее время различают однофазные и многофазные вольфрамовые сплавы. Они содержат один или несколько посторонних элементов. Самое известное соединение - это сплав вольфрама и молибдена. Добавление молибдена придает вольфраму прочность при его растяжении. Также к категории однофазных сплавов принадлежат соединения вольфрама с титаном, гафнием, цирконием. Самую большую пластичность вольфраму придает рений. Однако практически применять такой сплав - довольно трудоемкий процесс, так как рений очень тяжело добыть.

Так как вольфрам является одним из самых тугоплавких материалов, то получать вольфрамовые сплавы - непростая задача. Когда этот металл только начинает закипать, другие уже переходят в жидкость или состояние газа. Но современные ученые умеют получать сплавы при помощи процесса электролиза. Сплавы, содержащие вольфрам, никель и кобальт, используются для нанесения защитного слоя на непрочные материалы.

В современной металлургической промышленности также получают сплавы, используя вольфрамовый порошок. Для его создания необходимы особенные условия, включая создание вакуумной обстановки. Из-за некоторых особенностей взаимодействия вольфрама с другими элементами металлурги предпочитают создавать сплавы не двухфазной характеристики, а с применением 3, 4 и более составляющих. Эти сплавы особенно прочны, но при четком соблюдении формул. При малейших отклонениях процентных составляющих сплав может получиться хрупким и непригодным к использованию.

Вольфрам - элемент, применяющийся в технике

Из этого металла изготавливают нити накаливания обыкновенных лампочек. А также трубки для рентгеновских аппаратов, составляющие вакуумных печей, которые должны использоваться при крайне высоких температурах. Сталь, в состав которой входит вольфрам, имеет очень высокий уровень прочности. Такие сплавы используются для изготовления инструментов в самых различных областях: для бурения скважин, в медицине, машиностроении.

Главное преимущество соединения стали и вольфрама - износоустойчивость, маловероятность повреждений. Самый известный в строительстве вольфрамовый сплав носит название «победит». Также этот элемент широко используется в химической промышленности. С его добавлением создают краски, пигменты. Особенно широкое применение в этой сфере получил оксид вольфрама 6. Его применяют для изготовления карбидов и галогенидов вольфрама. Другое название этого вещества - триоксид вольфрама. 6 используется как желтый пигмент в красках для керамики и изделий из стекла.

Что такое тяжелые сплавы?

Все сплавы на основе вольфрама, которые обладают высоким показателем плотности, называют тяжелыми. Их получают только при помощи методов порошковой металлургии. Вольфрам всегда является основой тяжелых сплавов, где его содержание может составлять до 98 %. Кроме этого металла, в тяжелые сплавы добавляется никель, медь и железо. Однако в них могут входить и хром, серебро, кобальт, молибден. Самую большую популярность получили сплавы ВМЖ (вольфрам - никель - железо) и ВНМ (вольфрам - никель - медь). Высокий уровень плотности таких сплавов позволяет им поглощать опасное гамма-излучение. Из них изготавливают маховики колес, электрические контакты, роторы для гироскопов.

Карбид вольфрама

Около половины всего вольфрама применяется для изготовления прочных металлов, особенно вольфрамового карбида, который имеет температуру плавления 2770 С. Карбид вольфрама представляет собой химическое соединение, в котором содержится равное количество атомов углерода и вольфрама. Этот сплав имеет особые химические свойства. Вольфрам придает ему такую прочность, что по этому показателю он превосходит сталь в два раза.

Карбид вольфрама широко используется в промышленности. Из него изготавливают режущие предметы, которые должны быть очень устойчивы к высоким температурам и истиранию. Также из этого элемента изготавливают:

  • Детали самолетов, двигатели автомобилей.
  • Детали для космических кораблей.
  • Медицинские хирургические инструменты, которые применяются в сфере полостной хирургии. Такие инструменты дороже обычной медицинской стали, однако они более производительны.
  • Ювелирные изделия, особенно обручальные кольца. Такая популярность вольфрама связана с его прочностью, которая для венчающихся символизирует прочность взаимоотношений, а также внешним видом. Характеристики вольфрама в отполированном виде таковы, что он в течение очень длительного времени сохраняет зеркальный, блестящий вид.
  • Шарики для шариковых ручек класса люкс.

Победит - сплав вольфрама

Приблизительно во второй половине 1920-х годов во многих странах начали выпускаться сплавы для режущих инструментов, которые получали из карбидов вольфрама и металлического кобальта. В Германии такой сплав назывался видиа, в Штатах - карбола. В Советском Союзе такой сплав получил название «победит». Эти сплавы оказались прекрасными для обработки чугунной продукции. Победит является металлокерамическим сплавом с чрезвычайно высоким уровнем прочности. Он изготавливается в виде пластинок различных форм и размеров.

Процесс изготовления победита сводится к следующему: берется порошок карбида вольфрама, мелкий порошок никеля или кобальта, и все перемешивается и прессуется в специальных формах. Спрессованные таким образом пластины подвергаются дальнейшей температурной обработке. Это дает очень твердый сплав. Эти пластины используются не только для резки чугуна, но и для изготовления бурильных инструментов. Пластинки из победита напаиваются на бурильное оборудование при помощи меди.

Распространенность вольфрама в природе

Этот металл очень мало распространен в окружающей среде. После всех элементов он занимает 57-е место и содержится в виде кларка вольфрама. Также металл образует минералы - шеелит и вольфрамит. Вольфрам мигрирует в подземные воды либо в виде собственного иона, либо в виде всевозможных соединений. Но его наибольшая концентрация в подземных водах ничтожно мала. Она составляет сотые доли мг/л и практически не меняет их химические свойства. Вольфрам также может попадать в природные водоемы из стоков заводов и фабрик.

Влияние на человеческий организм

Вольфрам практически не поступает в организм с водой или пищей. Может существовать опасность вдыхания вольфрамовых частиц вместе с воздухом на производстве. Однако, несмотря на принадлежность к категории тяжелых металлов, вольфрам не токсичен. Отравления вольфрамом случаются лишь у тех, кто связан с вольфрамовым производством. При этом степень влияния металла на организм бывает разной. Например, вольфрамовый порошок, карбид вольфрама и такое вещество, как ангидрит вольфрамовой кислоты, могут вызывать поражение легких. Его главные симптомы - общее недомогание, лихорадка. Более сильные симптомы возникают при отравлении сплавами вольфрама. Это происходит при вдыхании пыли сплавов и приводит к бронхитам, пневмосклерозу.

Металлический вольфрам, попадая внутрь человеческого организма, не всасывается в кишечнике и постепенно выводится. Большую опасность могут представлять вольфрамовые соединения, относящиеся к растворимым. Они откладываются в селезенке, костях и коже. При длительном воздействии вольфрамовых соединений могут возникать такие симптомы, как ломкость ногтей, шелушение кожи, различного рода дерматиты.

Запасы вольфрама в различных странах

Самые большие ресурсы вольфрама находятся в России, Канаде и Китае. По прогнозам ученых, на отечественных территориях располагается около 943 тысяч тонн этого металла. Если верить этим оценкам, то подавляющая часть запасов расположена в Южной Сибири и на Дальнем Востоке. Очень незначительной является доля разведанных ресурсов - она составляет всего лишь порядка 7 %.

По количеству разведанных залежей вольфрама Россия уступает лишь Китаю. Большая их часть расположена в районах Кабардино-Балкарии и Бурятии. Но в этих месторождениях добывается не чистый вольфрам, а его руды, содержащие также молибден, золото, висмут, теллур, скандий и другие вещества. Две трети получаемых объемов вольфрама из разведанных источников заключены в труднообогатимых рудах, где главным вольфрамосодержащим минералом является шеелит. На долю легкообогатимых руд приходится всего лишь треть всей добычи. Характеристики вольфрама, добываемого на территории России, ниже, чем за рубежом. Руды содержат большой процент триоксида вольфрама. В России очень мало россыпных месторождений металла. Вольфрамовые пески также являются низкокачественными, с большим количеством оксидов.

Вольфрам в экономике

Глобальное производство вольфрама начало свой рост примерно с 2009 года, когда стала восстанавливаться азиатская промышленность. Крупнейшим производителем вольфрама остается Китай. Например, в 2013 году на долю производства этой страны приходился 81 % от мирового предложения. Около 12 % спроса на вольфрам связано с производством осветительных приборов. По прогнозам экспертов, использование вольфрама в этой сфере будет сокращаться на фоне применения светодиодных и люминесцентных ламп как в бытовых условиях, так и на производстве.

Считается, что будет расти спрос на вольфрам в сфере производства электронной техники. Высокая износостойкость вольфрама и его способность выдерживать электричество делают этот металл наиболее подходящим для производства регуляторов напряжения. Однако по объему этот спрос пока остается довольно незначительным, и считается, что к 2018 году он вырастет лишь на 2 %. Однако согласно прогнозам ученых, в ближайшее время должен произойти рост спроса на цементированный карбид. Это связано с ростом автомобильного производства в США, Китае, Европе, а также увеличением горнодобывающей промышленности. Считается, что к 2018 году спрос на вольфрам увеличится на 3,6 %.

М 30054 асс ПИ льфрамом способа гальван ого покрытия металругими металлами. тву В. А. Плотникова, Н. Н. Грациакского и у 13 марта 1931 года (заяв.свид.8490 твв опубликовано 30 апреля: 1933 года В настоящеее время имеется много способов покрытия металлических поверхностей другими металлами. Целью покрытия является улучшение техниче. ских качеств металлических поверхностей, как-то; повышение стойкости против коррозии (например, цинкование), предохранение от окисления (например, хромирование), придание более красивого вида и блеска(например, никеллирование) и проч,Посредств имеется в ви осаждения и годных мета лочных и ще на поверхнос мых металло Способ металлов вол лами состои ную смесь солагаемого способа нуть возможности х технически приисключением щемельных металлов, чески употребляеом пред ду достиг очти все ллов, за лочио-зе ти техн и Существующие способы покрытий можно разделить на две группы: 1) покрытие расплавленными металлами, например, получение белой жести, или покрытие распыленным металлом, как например, способ Шоппа, и проч 2) гальваническое покрытие металла (например, никеллирование, хромирование, серебрение и проч.).Эти способы не позволяют покрывать поверхности металлами, имеющими или высокую температуру плавления при первом способе, или не поддающимися хорошему гальваническому осаждению при втором способе. Покрытие же этими металлами могло бы дать много преимуществ в виду их большой стойкости.(т 7) хлорида алюминия и хлорида натрия, помещается для получения коллоидального раствора металл, идущий на по- крытие. При нагревании металлы образуют коллоидальный раствор в расплавленной смеси солей. По образовании достаточной концентрации коллоида металла в ванну опускают предварительно подготовленный металлический предмет, подлежащий покрытию, Через некоторое время коллоидальные частички металла осаждаются на поверхности предмета сплошным слоем большой или меньшей толщины. Например, на медной пластинке можно получить блестящий слой никнеля, вольфрама, марганца, алюминия, кадмия, молибдена и других метал-лов. авторскому свидетель Фортунатова, заявленно О выдаче авторского сви альванического покрытия ьфрамом и другими метал т в том, что в расплавлен лей, например, безводногоПредмет изобретения,Способ гальванического покрытия ме. таллов вольфрамом и другими металлами без применения внешнего источника тока, отличающийся тем, что по. кровныи металл растворяют в расплавленной смеси хлоридов алюминия и натрия и в этот раствор погружают покрываемый металлический предмет, например, медный.

Заявка

84900, 13.03.1931

Грацианский Н. Н, Плотников В. А, Фортунатов Н. С

МПК / Метки

Код ссылки

Способ гальванического покрытия металлов вольфрамом и другими металлами

Похожие патенты

31 из синтетической пленки (фиг.4), то эти пары будут улавливать,ся и вытягиваться. 1 ОВ целях сведения к минимуму мощ ности потерь подводы тока к аноду и катоду должны осуществляться с минимально возможным сопротивлением, по этому применяются провода из массивной меди с соответственно большим поперечным сечением.Если же вместо внутренней поверхности ленты необходимо хромировать ее наружную поверхность, то ленты распо О лагаются на устройстве так, что лента меньшего диаметра включается как ка тод, например, прессовочная лента 4 с подлежащей хпомированию поверхностью 15 (фиг.1). Соединение катода с отри цательным полюсом источника тока осуществляется через подводы на внутреннюю сторону ленты 4 в соответствии с приведенным описанием,...

В качестве металли ческих подложек используют стальнуюленту 08 КП фольги: алюминиевуюмарки А, бронзовую марки БрБ 2, латунную марки Лтолщиной соответственно 100 200 и 100 мкм. Для получения.раствора оксида хрома (Ч 1) используют оксид хрома (Сг 0), Растворители - вода, ацетон, В качестве материалов для покрытий применяют поли.Я -капролактам (полиамид-б), полиэтилен высокой плотности марки 20906040 и поликарбонат марки ПК. Толщину слоя оксида хрома (Ч 1) определяют по отношению массы оксидахрома (Ч 1), оставшейся на площадипокрываемой поверхности после испарения растворителя, к удельной массенаприменяемого оксида хрома(71). Нанесенную массу оксида хрома (Ч 1) наметаллические подложки определяютвзвешиванием на весах ВЛРг, Фольгу с...

Настоящего изобретения является иопцышеиие долговечности эмали.Достигается это тем, что в качестве опвердителя она содержит полиалюмофецилсилоксан при следующем соотношении компонентов Л, М. Хананашвили, Герш бергМосковский институт тонкойВ. Ломоносова итаэросил ример состава эмали (в Связующее - эпоксиднаясмола ЭД Активный пластификатор-разбавитель ТЭГГрафнтколлоидной марки СЛэросил марки АКремнийорганическийотвер,дитель - полиалюмофенилсилоксан марки КОТехнология получения эмали следующая.В эпоксидную смолу ЭД, разогретую до температуры - 50 - 60 С, добавляют разбавитель ТЭГи наполцитсли - графит и аэросил. Смесь загружает в смсситель и тщательно псремсшнвают. Затем в нее добавляют отвердитсль н снова смешивают,...