Плацента, типы плацент, плацентарный барьер. Что такое плацентарный барьер

Посредством плаценты плод связывается с материнским организмам. Плацента человека относится к дискоидальному и гемохориальному типу. Различают следующие виды плаценты:

    Эпителиохориальная – диффузная плацента, такой тип плаценты контактирует с железами матки, и эти крупные молекулы расщепляются до аминокислот (в печени плода). Встречается у верблюда, лошади, свинья и китообразных.

    Десмохориальная или множественная плацента . Такой тип плаценты расщепляет эпителий матки, и ворсинки хориона прямо контактируют с соединительной тканью. Встречается у животных – овцы, коровы, козы и др. Дети таких животных после рождения способны к самостоятельному питанию и передвижению.

    Следующий тип плаценты (второй тип плаценты) из организма матери получает потовые аминокислоты, в результате зародыш получает потовые питательной материал. Первой вид такой плаценты называется эндотелиохориальная и её ворсинки в слизистой оболочке матки образует женский поясок. Ворсинки хориона расщепляет эпителий, соединительнотканный, а такие стенку кровеносных сосудов матки и прямо контактирует с кровью, (ёж, крот, штучке мышь, крысы, кролики, обезьяна и человек). Детеныши этих животных рождается очень нежными и неспособны самостоятельно питаться. Стенки ворсинок плаценты имеет очень сложное строение, и кровь матери и плода никогда не смешивается, потому что между ними образуется гематоплацентарный барьер. Барьер состоит из эндотелия кровеносных сосудов и его базальной мембраны. Рыхлая волокнистая соединительная ткань, окружающая сосуд, трофобласты и его базальной мембраны, а также синцитиотрофобласта.

Плацента выполняет трофическую и экскреторную (для плоды) эндокринную (хоральный гонадотропин, прогестерон и эстроген), защитную (иммунологическая защита) функции. Однако через гематоплацентарный барьер свободно проникает алкоголь, наркотики, лекарственные средства, никотин и гормоны через кровь матки поступает к плоду.

В строения плаценты различается плодная и материнская части. Плодная часть представлена разветвлениями хориона, и связанная с ним амниотической оболочкой. Материнская часть представлен преобразованным базальным слоем эндометрия. Развития плаценты начинается на 3-й неделе, на вторичные эпителиомезенхимальные ворсинки начинают врастать сосуды и образовываться третичные сосуды. Проницаемость плаценты зависит от содержания в ней гиалуроновой кислоты и ферменты гиалуронидазы. Кроме того для прочной свези плаценты с материнским организмом необходим витамины С и А, которые участвуют в дифференцировке, фибробластов и синтезе коллагена. Поверхность ворсинок хориона покрыта цитотробластом и синцитиотрофобластом. Синцитиотрофобласт образуется позже и является производным цитотрофобласта, в результате чего плод питается гематотрофью.

К концу 3-его месяцы развития плодная часть плаценты образует стволовые или якорные пластинки. Вначале хоральные ворсинке покрыты однослойным эпителиям, позже эти клетки митотический делятся и образуют многоядерную структуру – синцитиотрофобласт. Синцитиотрофобласт содержит очень много протеолитических и окислительных ферментов (АТФ-азы, щелочную и кислую фосфатазу, 5-нуклеотидазу, СДГ-азы (сукцинатодегидрогиназы), цитохромоксидазу, моноаминоксидазу и т.д.). К концу 2-месяца на ворсинках цитотрофобласт исчезает и сохраняется только синцетиотрофобласт.

В второй половине беременности синцитиотрофобласт истончается, ворсинки хориона покрывается фибриноидом Лангерганса, оксифильная массы в образовании который участвует наряду с трофобластом продукты свертывания плазмы. Структурно-функциональный единицей сформированный плаценты является котиледон, образованный стволовыми ворсинками и её вторичными и третичными разветвлениями. Общем качество котиледонов около 200 вес плаценты 500,0, толщина 3 см, диаметр 20 см.

Материнская часть плаценты представлено базальной пластинкой, соединительнотканными септами и лакунами. В полости большие лакуны свисают ворсинки. В базальной части эндометрия формируются децидуальные клетки, эти клетки крупные, цитоплазмы их богаты гликогенам и клетки расположены группами. В местах прикрепления ворсин к материнской части плаценты, а именно на поверхности базального слоя обнаруживается аморфная субстанция (фибриноид Рора), и играющая важную роль в обеспечения иммунологического гомеостаза в системы мать-плод.

Вокруг плаценты находится замыкательная пластинка, которая препятствует истечению крови из лакун плаценты.

Связь между матерью и плодам обеспечивается нейрогуморальными механизмами. В эндометрии расположены хемо-, механо-, терморецепторы, в стенке кровеносных сосудов содержатся барорецепторы. Если воздействовать на рецепторы слизистой оболочки матки, у матери изменяется дыхание, сердцебиение и кровенос давление, а это отражается на составная плода. Важную регуляторную функцию выполняют тироксин, кортикостероиды, инсулин и половые гормоны. В период беременности усиленно продуцируется гормоны надпочечной железы. В самый ……… вырабатывается гормон хориальной гонадотропин, а он усиливает работу в гипофизе аденокортикотропинных гормонов. В целом нейрогуморальные механизмы начинают функционировать на 2-3 месяце, в этом периоде совершает первые двигательные реакции плода. У плода несколько усилен синтез инсулина, это необходимо для его роста и развития. Если мать страдает сахарным диабетом, то у плода компенсаторное усиливается выработка инсулина.

Плацента человека состоит из тканей матери и плода. Кровеносные сосуды матери впадают в межворсинчатое пространство, в которое проникают выросты хориона. В последних, в рыхлой ткани, находятся сосуды плода.

На поверхности, омываемой материнской кровью, имеется синцитиальная ткань, так называемая трофобластная оболочка. Обмен веществом между кровью матери и плода осуществляется, таким образом, через следующие структуры: трофобластная оболочка, рыхлая ткань стромы выростов хориона, эндотелий капилляров хориона. В процессе развития плода толщина этих слоев не одинакова и в конце периода беременности составляет лишь несколько микрон. Площадь контакта между поверхностью хориоидных выростов и кровью матери также не постоянна и в предродовом периоде составляет около 14 м 2 . В ранних периодах беременности толщина барьера существенно больше, а площадь поверхности - меньше. В этой связи и проницаемость плацентарного барьера для ксенобиотиков в различные сроки вынашивания плода не одинакова. В целом у человека, она постоянно увеличивается до 8 месяца беременности, а затем опять снижается. Последствия для плода проникновения ксенобиотиков через плаценту определяется соотношением мощности потока токсиканта через плацентарный барьер с одной стороны, размерами развивающегося плода и состоянием делящихся и дифференцирующихся клеток его тканей, с другой.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 9.1. Плацентарный барьер:

  1. 5.1.1. Некоторые свойства гематоэнцефалического и гематоликворного барьеров
  2. Патофизиология реактивности и резистентности организма. Биологические барьеры

Плацента связывает плод с организмом матери и состоит из плодной (ворсинчатый хорион) и материнской (децидуальная оболочка) частей (рис. 20–4 и 20–5). В плаценте ворсины хориона, содержащие кровеносные капилляры плода, омываются кровью беременной, циркулирующей в межворсинчатом пространстве. Кровь плода и кровь беременной разделены плацентарным барьером - трофобластом, стромой ворсин и эндотелием капилляров плода. Перенос веществ через плацентарный барьер осуществляется за счёт пассивной диффузии (кислород, углекислый газ, электролиты, моносахариды), активного транспорта (железо, витамин С) или опосредованной переносчиками облегчённой диффузии (глюкоза, Ig).

Рис . 20–5 . Децидуальная оболочка матки и плацента . Полость матки выстилает пристеночная часть децидуальной оболочки. Децидуальная оболочка, обращённая к ворсинчатому хориону, входит в состав плаценты.

Кровоток в плаценте

Пуповина , или пупочный канатик (рис. 20–3, 20–4) - шнуровидное образование, содержащее две пуповинные артерии и одну пуповинную вену, несущие кровь от плода к плаценте и обратно. По пуповинным артериям течёт венозная кровь от плода к ворсинкам хориона в составе плаценты. По вене к плоду притекает артериальная кровь, обогащённая кислородом в кровеносных капиллярах ворсинок. Общий объёмный кровоток через пуповину составляет 125 мл/кг/мин (500 мл/мин).

Артериальная кровь беременной впрыскивается непосредственно в межворсинчатое пространство (лакуны, см. рис. 20–3 и 20–4) под давлением и толчками из примерно сотни расположенных перпендикулярно по отношению к плаценте спиральных артерий. Лакуны полностью сформированной плаценты содержат около 150 мл омывающей ворсинки материнской крови, полностью замещаемой 3–4 раза в минуту. Из межворсинчатого пространства венозная кровь оттекает через расположенные параллельно плаценте венозные сосуды.

Плацентарный барьер . В состав плацентарного барьера (материнская кровь  кровь плода) входят: синцитиотрофобласт  цитотрофобласт  базальная мембрана трофобласта  соединительная ткань ворсинки  базальная мембрана в стенке капилляров ворсинки  эндотелий капилляров ворсинки. Именно через эти структуры происходит обмен между кровью беременной и кровью плода. Именно эти структуры реализуют защитную (в том числе иммунную) функцию плода.

Функции плаценты

Плацента выполняет множество функций, включая транспорт питательных веществ и кислорода от беременной к плоду, удаление продуктов жизнедеятельности плода, синтез белков и гормонов, иммунологическую защиту плода.

Транспортная функция

Перенос кислорода и диоксида углерода происходит путём пассивной диффузии.

O 2 . Парциальное давление кислорода (Po 2) артериальной крови спиральных артериол при pH 7,4 равно 100 мм рт.ст при насыщении Hb кислородом 97,5%. В то же время Po 2 крови в венозной части капилляров плода составляет 23 мм рт.ст. при насыщении Hb кислородом 60%. Хотя Po 2 материнской крови в результате диффузии кислорода быстро уменьшается до 30–35 мм рт.ст., даже этой разницы в 10 мм рт.ст. достаточно для адекватного снабжения кислородом организма плода. Эффективной диффузии кислорода от матери к плоду способствуют дополнительные факторы.

 Hb плода имеет большее сродство к кислороду, чем дефинитивного Hb беременной (кривая диссоциации HbF сдвинута влево). При одинаковых Po 2 Hb плода связывает на 20–50% больше кислорода, чем Hb матери.

 Концентрация Hb в крови плода выше (это увеличивает кислородную ёмкость), чем в крови матери. Таким образом, несмотря на то, что насыщение кислородом крови плода редко превышает 80%, гипоксии тканей плода не возникает.

 pH крови плода ниже pH цельной крови взрослого человека. При увеличении концентрации ионов водорода сродство кислорода к Hb уменьшается (эффект Бор а), поэтому кислород легче переходит из крови матери в ткани плода.

CO 2 диффундирует через структуры плацентарного барьера по направлению концентрационного градиента (примерно 5 мм рт.ст.) между кровью пуповинных артерий (48 мм рт.ст.) и кровью лакун (43 мм рт.ст.). Кроме того, Hb плода имеет меньшее сродство к CO 2 , чем дефинитивный Hb матери.

Мочевина , креатинин , стероидные гормоны , жирные кислоты , билирубин . Их перенос происходит путём простой диффузии, но плацента слабо проницаема для образующихся в печени глюкуронидов билирубина.

Глюкоза - облегчённая диффузия.

Аминокислоты и витамины - активный транспорт.

Белки (например, трансферрин, гормоны, некоторые классы Ig), пептиды , липопротеины - опосредованный рецепторами эндоцитоз.

Электролиты - Na + , K + , Cl – , Ca 2+ , фосфат - пересекают барьер путём диффузии и с помощью активного транспорта.

Иммунологическая защита

 Транспортируемые через плацентарный барьер материнские АТ класса IgG обеспечивают пассивный иммунитет плода.

 Организм беременной не отторгает иммунологически чужеродный плод из-за локального угнетения реакций клеточного иммунитета женщины и отсутствия гликопротеинов главного комплекса гистосовместимости (HLA) в клетках хориона.

 Хорион синтезирует вещества, угнетающие клеточный иммунный ответ (экстракт из синцитиотрофобласта тормозит in vitro размножение клеток иммунной системы беременной).

 В клетках трофобласта не экспрессируются Аг HLA, что обеспечивает защиту фетоплацентарного комплекса от распознавания иммунокомпетентными клетками беременной. Именно поэтому отщеплённые от плаценты участки трофобласта, попадая в лёгкие женщины, не отторгаются. В то же время другие типы клеток в ворсинках плаценты несут на своей поверхности Аг HLA. Трофобласт не содержит также эритроцитарных Аг систем AB0 и Rh.

Детоксикация некоторых ЛС.

Эндокринная функция . Плацента - эндокринный орган. Плацента синтезирует множество гормонов и других биологически активных веществ, имеющих важное значение для нормального течения беременности и развития плода (ХГТ, прогестерон, хорионический соматомаммотропин, фактор роста фибробластов, трансферрин, пролактин, релаксины, кортиколиберин, эстрогены и другие; см. рис. 20–6, а также рис. 20–12 в книге, см. также табл. 18–10).

Хорионический гонадотропин (ХГТ) поддерживает непрерывную секрецию прогестерона в жёлтом теле до тех пор, пока плацента не начнёт синтезировать прогестерон в количестве, достаточном для нормального течения беременности. Активность ХГТ быстро возрастает, удваиваясь каждые 2–3 дня и достигая пика на 80-й день (80 000–100 000 МЕ/л), затем снижается до 10 000–20 000 МЕ/л и остаётся на этом уровне до конца беременности.

Маркёр беременности . ХГТ продуцируют только клетки синцитиотрофобласта. ХГТ можно обнаружить в сыворотке крови беременной через 8–9 дней после оплодотворения. Количество секретируемого ХГТ напрямую связано с массой цитотрофобласта. На ранних сроках беременности это обстоятельство используют для диагностики нормальной и патологической беременности. Содержание ХГТ в крови и в моче беременной можно определить биологическим, иммунологическим и радиологическим методами. Иммунологические (в том числе радиоиммунологические) тесты специфичнее и чувствительнее биологических методов. При снижении концентрации ХГТ вдвое по сравнению с нормальными значениями можно ожидать нарушения имплантации (например, эктопическую беременность или неразвивающуюся маточную беременность). Повышение концентрации ХГТ выше нормальных значений часто связано с многоплодной беременностью или пузырным заносом.

Стимуляция секреции прогестерона жёлтым телом . Важная роль ХГТ заключается в предотвращении регрессии жёлтого тела, что обычно происходит на 12–14-й дни после овуляции. Значительная структурная гомология ХГТ и ЛГ позволяет ХГТ связываться с рецепторами лютеоцитов для ЛГ. Это приводит к продолжению работы жёлтого тела после 14-го дня от момента овуляции, что обеспечивает прогрессирование беременности. Начиная с 9-й недели, синтез прогестерона осуществляет плацента, масса которой к этому сроку позволяет образовывать прогестерон в количестве, достаточном для пролонгирования беременности (рис. 20–6).

Стимуляция синтеза тестостерона клетками Ляйдига у плода мужского пола. К концу I триместра ХГТ стимулирует гонады плода к синтезу стероидных гормонов, необходимых для дифференцировки внутренних и наружных половых органов.

 Синтез и секрецию ХГТ поддерживает секретируемый цитотрофобластом гонадолиберин .

Прогестерон . В первые 6–8 недель беременности главный источник прогестерона - жёлтое тело (содержание в крови беременной 60 нмоль/л). Начиная со II триместра беременности основным источником прогестерона становится плацента (содержание в крови 150 нмоль/л). Жёлтое тело продолжает синтезировать прогестерон, но в последнем триместре беременности плацента вырабатывает его в 30–40 раз больше. Концентрация прогестерона в крови продолжает увеличиваться вплоть до конца беременности (содержание в крови 500 нмоль/л, примерно в 10 раз больше, чем вне беременности), когда плацента синтезирует 250 мг прогестерона в сутки. Для определения содержания прогестерона используют радиоиммунный метод, а также уровень прегнандиола - метаболита прогестерона - хроматографически.

 Прогестерон способствует децидуализации эндометрия.

 Прогестерон, ингибируя синтез Пг и уменьшая чувствительность к окситоцину, угнетает возбудимость миометрия до наступления родов.

 Прогестерон способствует развитию альвеол молочной железы.

Рис . 20 6 . Содержание гормонов в плазме крови при беременности

Эстрогены . При беременности содержание эстрогенов в крови беременной (эстрон, эстрадиол, эстриол) существенно повышено (рис. 20–6) и превышает значения вне беременности примерно в 30 раз. При этом эстриол составляет 90% всех эстрогенов (1,3 нмоль/л на 7-й неделе беременности, 70 нмоль/л к концу беременности). К концу беременности экскреция эстриола с мочой достигает 25–30 мг/сут. Синтез эстриола происходит при интеграции метаболических процессов беременной, плаценты и плода. Большую часть эстрогенов секретирует плацента, но в ней происходит не синтез этих гормонов de novo , а лишь ароматизация стероидных гормонов, синтезированных надпочечниками плода. Эстриол - показатель нормальной жизнедеятельности плода и нормального функционирования плаценты. С диагностическими целями содержание эстриола определяют в периферической крови и суточной моче. Высокие концентрации эстрогена вызывают увеличение мышечной массы матки, размеров молочной железы, наружных половых органов.

Релаксины - гормоны из семейства инсулинов - в течение беременности оказывают расслабляющее действие на миометрий, перед родами приводят к расширению маточного зева и повышению эластичности тканей лонного сочленения.

Соматомаммотропины 1 и 2 (плацентарные лактогены) образуются в плаценте спустя 3 нед после оплодотворения и могут быть определены в сыворотке крови женщины радиоиммунным методом с 6 нед беременности (35 нг/мл, 10 000 нг/мл в конце беременности). Эффекты соматомаммотропинов, как и эффекты гормона роста, опосредуют соматомедины.

Липолиз . Стимулируют липолиз и увеличивают содержание в плазме свободных жирных кислот (энергетический резерв).

Углеводный обмен . Подавляют утилизацию глюкозы и глюконеогенез у беременной.

Инсулиногенное действие . Повышают в плазме крови содержание инсулина, одновременно снижая его эффекты на клетки–мишени.

Молочные железы . Индуцируют (как и пролактин) дифференцировку секреторных отделов.

Пролактин . Во время беременности существует три потенциальных источника пролактина: передняя доля гипофиза матери и плода, децидуальная ткань матки. У небеременной женщины содержание пролактина в крови находится в диапазоне 8–25 нг/мл, при беременности постепенно возрастает до 100 нг/мл к концу беременности. Основная функция пролактина - подготовка молочных желёз к лактации.

Рилизинг гормоны . В плаценте происходит синтез всех известных гипоталамических рилизинг–гормонов и соматостатина (см. табл. 18–10).


Человека состоит из двух частей: плодовой (собственно, хорион) и материнской (эндометрий матки – decidua basalis).

Плодовая часть со стороны амниотической полости покрыта амнионом, который представлен однослойным призматическим эпителием и тонкой соединительнотканной пластинкой. В хориальной пластинке располагаются крупные кровеносные сосуды, которые пришли сюда по пуповине. Они располагаются в особой соединительной ткани – слизистой ткани . Слизистая ткань в норме встречается лишь до рождения – в пуповине и хориальной пластинке. Она богата гликозаминогликанами, которые определяют е высокий тургор, поэтому сосуды и в пуповине, и в хориальной пластинке никогда не пережимаются.

Хориальная пластинка отграничена от межворсинчатого пространства и материнского кровотока слоем цитотрофобласта и фибриноидом (Миттабуха). Фибриноид выполняет иммуно-биологическую барьерную функцию. Это “заплатка” в месте повреждения цитотрофобласта, препятствующая контакту материнской крови с кровью и тканями плода, т.е. он препятствует иммунному конфликту.

В межворсинчатом пространстве определяются ворсинки разного диаметра. Во-первых, это первичные (основные) ворсинки . Они могут достигать глубоких слоев эндометрия и врастать в него, тогда они называются якорными. Другие могут не соприкасаться с материнской частью плаценты. От основных ворсинок первого порядка ветвятся вторичные ворсинки , от которых ветвятся третичные ворсинки (обычно, окончательные; только при неблагоприятных условиях беременности или при переношенной беременности может происходить дальнейшее ветвление ворсинок).

В трофике плода участие в основном принимают третичные ворсинки. Рассмотрим их строение. Центральную часть ворсинки занимают кровеносные сосуды, вокруг них расположена соединительная ткань. На первых этапах ворсинку отграничивает слой цитотрофобласта, но затем его клетки сливаются и образуют толстый синцитиотрофобласт . Участки цитотрофобласта остаются лишь вокруг якорных пластин.

Т.о., между материнской и плодовой кровью образуется плацентарный барьер. Он представлен:

Эндотелием капилляров ворсинки,

Базальной мембраной капилляров,

Соединительнотканной пластинкой,

Базальной мембраной цитотрофобласта,

Цитотрофобластом или синцитиотрофобластом.

Если синцитиотрофобласт разрушается, то в этом участке также образуется фибриноид (Лангханса), который также выполняет роль барьера.

Т.о., в плацентарном барьере главную роль выполняет синцитий, который богат различными ферментативными системами, обеспечивающими выполнение дыхательной, трофической и частично белоксинтезирующей функций. Через плацентарный барьер из крови матери поступают аминокислоты, простые сахара, липиды, электролиты, витамины, гормоны, антитела, а также лекарственные препараты, алкоголь, наркотики и проч. Плод же отдает углекислоту и различные азотистые шлаки, и, кроме того, гормоны плода, что часто ведет к изменению внешнего вида будущей матери.

Материнская часть плаценты представлена измененным эндометрием, в который вросли ворсинки хориона (т.е., основной отпадающей оболочкой). Он представлен волокнистыми структурами и большим количеством очень крупных децидуальных клеток, которые имеют отношение и к барьерной, трофической, регуляторной функциям. Эти клетки частично остаются в эндометрии после родов, не позволяя вторично имплантироваться в этот участок. Децидуальные клетки окружены фибриноидом (Рора), который в целом отгораживает материнскую часть плаценты от межворсинчатого пространства. Фибриноид Рора также выполняет барьерную иммунобиологическую функцию.



Сегодня термином «плацента» уже никого не удивить. Современные девушки осведомлены о беременности и родах гораздо лучше, чем их бабушки и мамы. Однако в большинстве своем эти знания являются поверхностными. Поэтому сегодня мы хотим поговорить о том, чем является в утробе матери плацентарный барьер. На первый взгляд, что тут непонятного? Детское место обладает свойствами защищать развивающийся эмбрион от вредных воздействий и токсичных веществ. На самом деле этот орган является настоящей загадкой и чудом природы.

Под защитой

Плацентарный барьер - это своеобразная иммунная система. Она служит границей между двумя организмами. Именно плацента обеспечивает их нормальное сосуществование и отсутствие иммунологического конфликта. Первый триместр беременности - самый сложный. Отчасти потому, что плацента еще не сформирована, значит, организм эмбриона совершенно не защищен. Примерно с 12 недели она полностью включается в работу. Отныне она готова выполнять все свои функции.

Как устроена плацента?

Это важный момент, без которого мы не сможет продолжить наш разговор. Само слово «плацента» пришло к нам с латыни. Оно переводится как «лепешка». Основной ее частью являются особые ворсинки, которые начинают формироваться с первых дней беременности. С каждым днем они все более разветвляются. При этом внутри них находится кровь ребенка. Одновременно снаружи поступает материнская кровь, обогащенная питательными веществами. То есть плацентарный барьер несет в себе в первую очередь разделительную функцию. Это является очень важным, так как данный орган регулирует обмен веществ между двумя замкнутыми системами. Согласно этому утверждению, внешняя и внутренняя стороны плаценты имеет разное строение. Внутри она является гладкой. Внешняя сторона - неровная, дольчатая.

Барьерная функция

Что включает в себя понятие «плацентарный барьер»? Давайте еще немного отклонимся в сторону физиологии протекающих процессов. Как уже говорилось, именно уникальные ворсинки обеспечивают обмен веществами между женщиной и эмбрионом. Материнская кровь приносит малышу кислород и а плод отдает беременной девушке углекислый газ. пока у них одна на двоих. И вот в этом и заключается самое большое таинство. Плацентарный барьер разделяет кровь матери и плода настолько хорошо, что они не смешиваются.

На первый взгляд кажется невообразимым, но две сосудистые системы разделены уникальной мембранной перегородкой. Она избирательно пропускает то, что важно для развития плода. С другой стороны, токсичные, вредные и опасные вещества задерживаются здесь. Поэтому врачи говорят, что начиная с 12 недели будущей маме уже можно немного расслабиться. Плацента в состоянии оградить от многих неблагоприятных факторов организм ребенка.

Только самое важное

Через плацентарный барьер проходят все необходимые питательные вещества, а также кислород. Если врач наблюдает патологию развития плода, он может назначить специальные препараты, которые усиливают кровоснабжение плаценты. Значит, увеличивают количество кислорода, что поступает малышу. Однако не все так просто. Мембранная перегородка задерживает содержащиеся в крови матери бактерии и вирусы, а также антитела, которые вырабатываются при резус-конфликте. То есть уникальное строение этой мембраны настроено на сохранение плода при самых разных ситуациях.

Нельзя не отметить высокую избирательность перегородки. Попавшие через плацентарный барьер одни и те же вещества по-разному преодолевают этот рубеж в сторону мамы и плода. Например, фтор очень легко и быстро проникает от женщины к малышу, но совсем не пропускается обратно. Аналогичная ситуация и с бромом.

За счет чего происходит регуляция обмена веществ?

Мы уже рассказали читателю, что плацентарный барьер разделяет лимфу матери и плода. Как же природа сумела запустить столь совершенный механизм регуляции, когда то, что нужно, проникает через барьер, а то, что вредно, задерживается? На самом деле мы здесь говорим сразу про два механизма. Далее, немного подробнее остановимся на каждом из них.

В первую очередь нас интересует, как регулируется поступление жизненно важных, питательных элементов. Здесь все достаточно просто. Липиды и углеводы, белки и витамины постоянно имеются в крови матери. Значит, организм может выработать сбалансированную схему. Она изначально будет подразумевать, что концентрация определенных веществ в крови матери и ребенка различна.

Проницаемость плаценты

Гораздо сложнее, когда мы говорим о токсических веществах, попадающих в организм беременной. Плацентарный барьер разделяет лимфу и кровь. Значит, те токсины, которые прошли по кровотоку матери, не попадут в чистом виде к плоду. Однако пройдя черед естественные фильтры (печень и почки) в остаточном виде, они все-таки могут навредить малышу. Дело в том, что случайно попавшие в организм матери вещества (химикаты, препараты) гораздо сложнее остановить. Они зачастую имеют свойство преодолевать плацентарный барьер.

Ограниченные барьерные функции

Природа не могла предусмотреть развитие современной промышленности. Поэтому продукты химического производства сравнительно легко проходят природный барьер. Они создают угрозу росту и развитию плода. Степень проникновения через плаценту зависит от свойств и характеристик конкретного вещества. Мы отметим лишь некоторые моменты, на самом деле их намного больше. Так, лекарственные вещества с молекулярным весом (меньше 600 г/моль) походят через плацентарный барьер гораздо быстрее. Одновременно те, которые имеют меньший показатель, практически не проникают. Например, это инсулин и гепарин, которые можно без страха назначать во время беременности.

Есть еще один признак. Жирорастворимые вещества гораздо лучше проникают через плаценту, чем водорастворимые. Поэтому гидрофильные соединения являются более желательными. Кроме того, медики знают, что вероятность проникновения вещества через плаценту зависит от времени пребывания препарата в крови. Все лекарственные препараты длительного действия более опасны, чем те, которые быстро метаболизируются.