Что такое внутренняя энергия? Внутренняя энергия А чего зависит внутренняя энергия тела

Все окружающие нас макроскопические тела в своем составе имеют частицы: атомы или молекулы. Находясь в постоянном движении, они одновременно обладают двумя видами энергии: кинетической и потенциальной и формируют внутреннюю энергию тела:

U = ∑ Е k +∑ Е p

В это понятие входит также энергия взаимодействия друг с другом электронов, протонов, нейтронов.

Возможно ли изменение внутренней энергии

Существует 3 способа ее изменения:

  • благодаря процессу теплопередачи;
  • путем совершения механической работы;
  • с помощью проведения химических реакций.

Рассмотрим более подробно все варианты.

Если работу будет совершать само тело, то его внутренняя энергия станет уменьшаться, а когда работу совершают над телом, внутренняя его энергия будет увеличиваться.

Простейшими примерами увеличения энергии являются случаи добывания огня с помощью трения:

  • с применением трута;
  • с помощью огнива;
  • с использованием спичек.

Тепловые процессы, связанные с изменениями температуры, также сопровождаются изменениями внутренней энергии. Если нагревать тело, его энергия будет возрастать.

Результатом химических реакций является превращение веществ, которые отличны друг от друга строением и составом. Например, в процессе горения топлива после соединения водорода с кислородом образуется оксид углерода. При соединении соляной кислоты с цинком выделится водород, а в результате горения водорода выделится водяной пар.

Внутренняя энергия тела будет меняться и из-за перехода электронов с одной электронной оболочки на другую.

Энергия тел — зависимость и характеристики

Внутренняя энергия является характеристикой теплового состояния тела. Она зависит от:

  • агрегатного состояния, и меняется при кипении и испарении, кристаллизации или конденсации, плавлении или сублимации;
  • массы тела;
  • температуры тела, характеризующей кинетическую энергию частиц;
  • рода вещества.

Внутренняя энергия одноатомного идеального газа

Эта энергия, в идеале, складывается из кинетических энергий каждой частицы, которая беспорядочно и непрерывно движется, и потенциальной энергии их взаимодействия в рамках конкретного тела. Происходит это благодаря изменению температуры, что подтверждают проведенные эксперименты Джоуля.

Для расчета внутренней энергии одноатомного газа пользуются уравнением:

Где в зависимости от изменения температуры будет меняться внутренняя энергия (возрастать с увеличением температуры, и уменьшаться с ее убыванием). Внутренняя энергия – это функция состояния.

Вну́тренняя эне́ргия тела (обозначается как E или U ) - это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

Эта формула является математическим выражением первого начала термодинамики

Для квазистатических процессов выполняется следующее соотношение:

Идеальные газы

Согласно закону Джоуля, выведенному эмпирически, внутренняя энергия идеального газа не зависит от давления или объёма. Исходя из этого факта, можно получить выражение для изменения внутренней энергии идеального газа. По определению молярной теплоёмкости при постоянном объёме, . Так как внутренняя энергия идеального газа является функцией только от температуры, то

.

Эта же формула верна и для вычисления изменения внутренней энергии любого тела, но только в процессах при постоянном объёме (изохорных процессах); в общем случае является функцией и температуры, и объёма.

Если пренебречь изменением молярной теплоёмкости при изменении температуры, получим:

,

где - количество вещества, - изменение температуры.

Литература

  • Сивухин Д. В. Общий курс физики. - Издание 5-е, исправленное. - М .: Физматлит , 2006. - Т. II. Термодинамика и молекулярная физика. - 544 с. - ISBN 5-9221-0601-5

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Внутренняя энергия" в других словарях:

    внутренняя энергия - Функция состояния закрытой термодинамической системы, определяемая тем, что ее приращение в любом процессе, происходящем в этой системе, равно сумме теплоты, сообщенной системе, и работы, совершенной над ней. Примечание Внутренняя энергия… … Справочник технического переводчика

    Энергия физ. системы, зависящая от её внутр. состояния. В. э. включает энергию хаотического (теплового) движения всех микрочастиц системы (молекул, атомов, ионов и т. д.) и энергию вз ствия этих ч ц. Кинетич. энергия движения системы как целого и … Физическая энциклопедия

    ВНУТРЕННЯЯ ЭНЕРГИЯ - энергия тела или системы, зависящая от их внутреннего состояния; складывается из кинетической энергии молекул тела и их структурных единиц (атомов, электронов, ядер), энергии взаимодействия атомов в молекулах, энергии взаимодействия электронных… … Большая политехническая энциклопедия

    Тела складывается из кинетической энергии молекул тела и их структурных единиц (атомов, электронов, ядер), энергии взаимодействия атомов в молекулах и т. д. Во внутреннюю энергию не входит энергия движения тела как целого и потенциальная энергия … Большой Энциклопедический словарь

    внутренняя энергия - ▲ энергия материальное тело, в соответствии с, состояние, внутренний температура внутренняя эн … Идеографический словарь русского языка

    внутренняя энергия - – это полная энергия системы за вычетом потенциальной, обусловленной воздействием на систему внешних силовых полей (в поле тяготения), и кинетической энергии движущейся системы. Общая химия: учебник / А. В. Жолнин … Химические термины

    Современная энциклопедия

    Внутренняя энергия - тела, включает кинетическую энергию составляющих тело молекул, атомов, электронов, ядер, а также энергию взаимодействия этих частиц друг с другом. Изменение внутренней энергии численно равно работе, которую совершают над телом (например, при его… … Иллюстрированный энциклопедический словарь

    внутренняя энергия - термодинамическая величина, характеризизующая количество всех видов внутренних движений, совершенных в системе. Измерить абсолютную внутреннюю энергия тела невозможно. На практике измеряют лишь изменение внутреннюю энергию… … Энциклопедический словарь по металлургии

    Тела, складывается из кинетической энергии молекул тела и их структурных единиц (атомов, электронов, ядер), энергии взаимодействия атомов в молекулах и т. д. Во внутреннюю энергию не входит энергия движения тела как целого и потенциальная энергия … Энциклопедический словарь

Книги

  • Путь Ци. Энергия жизни в вашем теле. Упражнения и медитации , Свейгард Мэтью , Уравновешенность и внутренняя гармония даны нам от рождения, но современная жизнь легко может выбить нас из естественного равновесия. Иногда мы нарушаем его сознательно, скажем, едим слишком… Категория: Восточные эзотерические учения Серия: Издатель: Весь ,

Внутренняя энергия любого тела связана с движением и состоянием частиц (молекул, атомов) вещества. Если известна полная энергия тела, то внутреннюю можно найти, исключив из полной движение всего тела как макроскопического объекта, а также энергию взаимодействия данного тела с потенциальными полями.

Также внутренняя энергия содержит в себе энергию колебаний молекул и потенциальную энергию межмолекулярного взаимодействия. Если речь идет об идеальном газе, то основной вклад во внутреннюю энергию дает кинетическая составляющая. Полная внутренняя энергия равна сумме энергий отдельных частиц.

Как известно, кинетическая энергия поступательного движения материальной точки, которая моделирует частицу вещества, сильно зависит от скорости ее движения. Также стоит заметить, что и энергия колебательных и вращательных движений зависит от их интенсивности.

Вспомните из курса молекулярной физики формулу для внутренней энергии идеального одноатомного газа. Она выражается через сумму кинетических составляющих всех частиц газа, которую можно усреднить. Усреднение по всем частицам приводит к явной зависимости внутренней энергии от температуры тела, а также от количества степеней свободы частиц.

В частности, для одноатомного идеального газа, частицы которого имеют лишь три степени свободы поступательного движения, внутренняя энергия оказывается прямо пропорциональной трем вторым произведения постоянной Больцмана и температуры.

Зависимость от температуры

Итак, внутренняя энергия тела фактически отображает кинетическую энергию движения частиц. Для того чтобы понять, какова связь данной энергии с температурой, необходимо определить физический смысл величины температуры. Если нагреть сосуд, заполненный газом и имеющий передвижные стенки, то его объем увеличится. Это говорит о том, что давление внутри увеличилось. Давление газа создается за счет ударов частиц о стенки сосуда.

Раз давление увеличилось, значит, увеличилась и сила удара, что говорит о росте скорости движения молекул. Таким образом, увеличение температуры газа привело к увеличению скорости движения молекул. В этом и состоит суть величины температуры. Теперь становится ясно, что увеличение температуры, приводящее к росту скорости движения частиц, влечет за собой увеличение кинетической энергии внутримолекулярного движения, а значит, и увеличение внутренней энергии.

Энергия представляет собой общую меру различных форм движения материи. Соответственно формам движения материи различают и виды энергии – механическую, электрическую, химическую и т.д. Всякая термодинамическая система в любом состоянии обладает некоторым запасом энергии, существование которой было доказано Р.Клаузиусом (1850) и получило название внутренней энергии.

Внутренняя энергия (U) – это энергия всех видов движения микрочастиц, составляющих систему, и энергия их взаимодействия между собой.

Внутренняя энергия складывается из энергии поступательного, вращательного и колебательного движения частиц, энергии межмолекулярного и внутримолекулярного, внутриатомного и внутриядерного взаимодействий и др.

Энергию внутримолекулярного взаимодействия, т.е. энергию взаимодействия атомов в молекуле, часто называют химической энергией . Изменение этой энергии имеет место при химических превращениях.

Для термодинамического анализа нет необходимости знать из каких форм движения материи складывается внутренняя энергия.

Запас внутренней энергии зависит только от состояния системы. Следовательно, внутреннюю энергию можно рассматривать как одну их характеристик этого состояния наравне с такими величинами, как, давление, температура.

Каждому состоянию системы соответствует строго определенное значение каждого из его свойств.

Если гомогенная система в начальном состоянии имеет объем V 1 , давление P 1 , температуру T 1 , внутреннюю энергию U 1 , удельную электропроводностьæ 1 и т.д., а в конечном состоянии эти свойства соответственно равны V 2 , P 2 , T 2 , U 2, æ 2 и т.д., то изменение каждого свойства при переходе системы из начального состояния в конечное будет одним и тем же, независимо от того, каким путем переходит система из одного состояния в другое: первым, вторым или третьим (рис. 1.4).

Рис. 1.4 Независимость свойств системы от пути ее перехода

из обычного состояния в другое

Т.е. (U 2 - U 1) I = (U 2 - U 1) II = (U 2 - U 1) III (1.4)

Где цифры I, II, III и т.д. указывают пути процесса. Следовательно, если система из начального состояния (1) в конечное (2) перейдет по одному пути, а из конечного в начале – по другому пути, т.е. совершится круговой процесс (цикл), то изменение каждого свойства системы будет равно нулю.

Таким образом, изменение функции состояния системы не зависит от пути процесса, а зависит лишь от начального и конечного состояний системы. Бесконечно малое изменение свойств системы обозначается обычно знаком дифференциала d. Например, dU– бесконечное малое изменение внутренней энергии и т.д.

Формы обмена энергией

В соответствии с различными формами движения материи и различными видами энергии существуют различные формы обмена энергией (передача энергии) – формы взаимодействия. В термодинамике рассматриваются две формы обмена энергии между системой и окружающей средой. Это работа и теплота.

Работа. Наиболее наглядной формой обмена энергией является механическая работа, соответствующая механической форме движения материи. Она производится при перемещении тела под действием механической силы. В соответствии с другими формами движения материи различают и другие виды работы: электрическую, химическую и т.д. Работа является формой передачи упорядоченного, организованного движения, так как при совершении работы частицы тела движутся организованно в одном направлении. Например, совершение работы при расширении газа. Молекулы газа, находящегося в цилиндре под поршнем, находятся в хаотическом, неупорядоченном движении. Когда же газ начнет перемещать поршень, то есть совершать механическую работу, на беспорядочное движение молекул газа будет накладываться организованное движение: все молекулы получают некоторое смещение в направлении движения поршня. Электрическая работа так же связана с организованным движением в определенном направлении заряженных частиц материи.

Поскольку, работа является мерой передаваемой энергии, количество ее измеряется в тех же единицах, что и энергия.

Теплота . Форму обмена энергией, соответствующую хаотическому движению микрочастиц, составляющих систему, называюттеплообменом , а количество энергии, переданное при теплообмене, называюттеплотой .

Теплообмен не связан с изменением положения тел, составляющих термодинамическую систему, и состоит в непосредственной передаче энергии молекулами одного тела молекулам другого при их контакте.

Представим себе изолированный сосуд (систему) разделенную на две части теплопроводной перегородкой ав (рис. 1.5). Допустим, что в обеих частях сосуда находится газ.

Рис. 1.5. К понятию о теплоте

В левой половине сосуда температура газа Т 1 , а в правой Т 2 . Если Т 1 > Т 2 , то средняя кинетическая энергия () молекул газа в левой части сосуда, будет больше средней кинетической энергии () в правой половине сосуда.

В результате непрерывных соударений молекул о перегородку в левой половине сосуда часть энергии их передается молекулам перегородки. Молекулы же газа, находящегося в правой половине сосуда, сталкиваясь с перегородкой, приобретут какую-то часть энергии от ее молекул.

В результате этих столкновений кинетическая энергия молекул в левой половине сосуда будет уменьшаться, а в правой – увеличиваться; температуры Т 1 и Т 2 будут выравниваться.

Поскольку теплота является метой энергии, ее количество измеряется в тех же единицах, что энергия. Таким образом, теплообмен и работа являются формами обмена энергией, а количество теплоты и количество работы - мерами передаваемой энергии. Различие между ними состоит в том, что теплота – это форма передачи микрофизического, неупорядоченного движения частиц (и, соответственно, энергии этого движения), а работа представляет собой форму передачи энергии упорядоченного, организованного движения материи.

Иногда говорят: теплота (или работа) подводится или отводится от системы, при этом следует понимать, что подводиться и отводится не теплота и работа, а энергия, поэтому следует не употреблять такого рода выражений как «запас теплоты» или «теплота содержится».

Являясь формами обмена энергией (формами взаимодействия) системы с окружающей средой, теплота и работа не могут быть связаны с каким-либо определенным состоянием системы, не могут являться ее свойствами, а, следовательно, и функциями ее состояния. Это означает, что если система проходит из начального состояния (1) в конечное (2) различными путями, то теплота и работа будут иметь разные значения для разных путей перехода (рис. 1.6)

Конечное количество теплоты и работы обозначают Q и A, а бесконечно малые значения соответственно через δQ и δA. Величины δQ и δA в отличие от dU не являются полным дифференциалом, т.к. Q и A не являются функциями состояния.

Когда же путь процесса буде предопределен, работа и теплота приобретут свойства функций состояния системы, т.е. их численные значения будут определяться только начальным и конечным состояниями системы.

Вы видите взлетающую ракету. Она совершает работу – поднимает космонавтов и груз. Кинетическая энергия ракеты возрастает, так как по мере подъёма ракета приобретает всё большую скорость. Потенциальная энергия ракеты также возрастает, так как она всё выше поднимается над Землёй. Следовательно, сумма этих энергий, то есть механическая энергия ракеты, тоже увеличивается.

Мы помним, что при совершении телом работы его энергия уменьшается. Однако ракета совершает работу, но её энергия не уменьшается, а увеличивается! В чём же разгадка противоречия? Оказывается, что кроме механической энергии существует ещё один вид энергии – внутренняя энергия. Именно за счёт уменьшения внутренней энергии сгорающего топлива ракета совершает механическую работу и, кроме того, увеличивает свою механическую энергию.

Не только горючие , но и горячие тела обладают внутренней энергией, которую легко превратить в механическую работу. Проделаем опыт. Нагреем в кипятке гирю и поставим на жестяную коробочку, присоединённую к манометру. По мере того как воздух в коробочке будет прогреваться, жидкость в манометре начнёт двигаться (см. рисунок).

Расширяющийся воздух совершает над жидкостью работу. За счёт какой энергии это происходит? Разумеется, за счёт внутренней энергии гири. Следовательно, в этом опыте мы наблюдаем превращение внутренней энергии тела в механическую работу. Заметим, что механическая энергия гири в этом опыте не меняется – она всё время равна нулю.

Итак, внутренняя энергия – это такая энергия тела, за счёт которой может совершаться механическая работа, при этом не вызывая убыли механической энергии этого тела.

Внутренняя энергия любого тела зависит от множества причин: рода и состояния его вещества, массы и температуры тела и других. Внутренней энергией обладают все тела: большие и маленькие, горячие и холодные, твёрдые, жидкие и газообразные.

Наиболее легко на нужды человека может быть использована внутренняя энергия лишь, образно говоря, горячих и горючих веществ и тел. Это нефть, газ, уголь, геотермальные источники вблизи вулканов и так далее. Кроме того, в XX веке человек научился использовать и внутреннюю энергию так называемых радиоактивных веществ. Это, например, уран, плутоний и другие.

Взгляните на правую часть схемы. В популярной литературе нередко упоминаются тепловая, химическая, электрическая, атомная (ядерная) и другие виды энергии. Все они, как правило, являются разновидностями внутренней энергии, так как за счёт них может совершаться механическая работа, не вызывая при этом убыли механической энергии. Понятие внутренней энергии мы рассмотрим более подробно при дальнейшем изучении физики.